

Providing for co-existence between ocean wind energy and nature in Norway

Policy Brief

December 2025

Highlights

- To meet EGD emission targets, Norway aims to, by 2040, allocate sufficient areas to produce 30 GW of ocean wind energy. This should be done in a way that also secures co-existence with other users and marine environmental values.
- A main governance challenge to meeting these multiple policy objectives, is to provide for co-existence with marine nature.
- If co-existence with nature is not achieved, there is a risk of loss of the public and political support needed for development of ocean wind energy.
- We recommend several actions to better provide for co-existence with nature in allocation of areas and licences to ocean wind energy.
- This policy brief is a result of research conducted by the PERMAGOV project which sets out to improve EU marine governance so that it can better meet the goals and objectives established in the European Green Deal.

Research context

The [PERMAGOV project](#) sets out to improve EU marine governance so that it can better meet the goals and objectives established in the European Green Deal (EGD).

As Norway is not an EU country, the EGD does not apply to Norway. However, Norway has established policy goals that are consistent with the goals and aspirations of the EGD regarding decarbonization and environmental sustainability.

Offshore wind is seen as an important source of renewable energy that should play an essential role in the transition towards a carbon neutral economy.

This policy brief focuses on the sustainable development of offshore wind energy in Norway.

It is based on an examination of the planning processes involved in the identification of suitable areas to be opened for auction and granting of licenses for ocean wind projects within these areas.

Policy objectives

To meet their EGD emission targets, Norway aims to, by 2040, allocate sufficient areas for ocean wind energy projects to be able to generate 30 GW. This should be done in a way that also meets other Norwegian policy objectives, including providing for long-term value creation within Norwegian energy productions, strengthening and facilitating co-existence with other interests, and securing environmental values of the ocean areas. The latter includes taking an ecosystem approach where ocean space is managed holistically, and the public is consulted in decision-making. In the context of allocation of areas for ocean wind, this involves the use of strategic impact assessments, project specific impact assessments, and hearings associated with both types of assessments to obtain the views of different stakeholders on allocation of ocean areas to renewable energy production or other activities.

Key findings

Key Norwegian stakeholders, including the energy industry, fishing industry and environmental non-governmental organizations, are involved in discussions on the allocation of ocean space for offshore wind development. The stakeholders have been successful in creating good arenas for co-existence dialogues. A formal co-existence group was established by the Ministry of Energy. Additionally, key stakeholders have established other dialogue arenas, including conferences and working groups. The latter has resulted in key stakeholders agreeing on how to achieve good co-existence between ocean wind and fisheries in practice. In general, there is support for the development of ocean wind energy and agreement among stakeholders that good co-existence is achievable.

However, our examination found that stakeholders perceive that co-existence with nature is not sufficiently provided for in the processes of designating areas for ocean wind energy production. Potential risks with offshore wind for marine nature include impacts on migratory birds and changes to ecosystem functions that support a healthy and productive ocean. If nature and seafood production cannot be safeguarded, support for the ocean wind energy projects may be at risk. This may result in a loss of public, and thereby political support. This support is necessary to sustain the framing conditions needed for achieving Norwegian policy goals for offshore wind energy development.

Recommendations to Norwegian policy makers

Failure to secure good co-existence with nature could undermine the political commitment necessary to sustain the framing conditions required for the successful implementation of ocean wind energy projects. Important actions in overcoming this barrier are:

1. Defining what good co-existence between ocean wind energy and nature means in practice.
2. Clarifying the role of the formal co-existence group in providing for good co-existence between ocean wind energy and nature.
3. Strengthening and re-inventing how knowledge on environmental consequences and nature values are applied in decisions on allocation of ocean space to ocean wind energy.

4. Ensuring that the Norwegian civil services can fulfil their role as an advocate for nature in development of ocean wind energy.
5. Improving transparency on how different values are weighted in decisions on allocation of ocean space to ocean wind energy development.
6. Strengthening the holistic perspective in management of ocean space to include all stressors and the scale of development when evaluating the consequence of ocean wind energy development.

Recommendations to EU policy makers

While the above recommendations stem from ongoing and preliminary findings within a Norwegian context, they are also of general relevance for the EU policy context.

An overarching recommendation to the European Union is to highlight the importance of providing co-existence processes in the planned transition towards a greener society and a decarbonized economy. It is important that decision-making processes remain democratic and promote co-existence between different users, interests, and values. In the long term, this will be necessary for ensuring public support for offshore wind energy development.

Authors

Falk-Andersson, J., Nolde Nielsen, K. UiT The Arctic University of Norway, Hilde Rollefson Næss, Arctic Energy Partners

PERMAGOV has received funding from the European Union's Horizon Europe research and innovation program HORIZON-CL6-2022-GOVERNANCE-01-03 under grant agreement No 101086297, and by UK Research and Innovation under the UK government's Horizon Europe funding guarantee grant numbers 10045993, 10062097, 101086297.